The Mole and Related Calculations

1. What is a mole?

A mole is a convenient way of describing a very large quantity.

1 mole = 6.022×10^{23} particles (6.022 x 10^{23} is known as Avogadros'number)

2. How does the molecular formula relate to the number of moles?

The molecular formula indicates the number of individual atoms of a particular element in a given molecule. This value is directly equal to the number of moles of a given element within a mole of a molecule.

For example, in C_6H_6 , there are 6 carbon atoms in every one molecule of C_6H_6 . This can also be understood as 6 moles of carbon for every mole of C_6H_6 .

3. What is the molar mass of a compound?

It is the $\frac{mumber of grams}{mole}$ of a given substance.

Molar mass = (Number of moles of element 1 in compound)(atomic mass of element 1) + (number of moles of element 2 in compound)(atomic mass of element 2)+....

Atomic mass of each element is obtained from the periodic table.

a. Calculate the molar mass of C_6H_6 .

 $\frac{(6 \text{ moles of Carbon})}{(mole)} + \frac{(12.01 \text{g})}{(mol)} + \frac{(6 \text{ moles of hydrogen})}{(mol)} \frac{(1.01 \text{g})}{(mol)} = 78.12 \text{ g/mole}$

4. In 3.35×10^{22} total atoms of CH₃OH there are how many

a. Molecules

 $(3.35 \times 10^{22} \text{ total atoms}) \frac{(1 \text{ molecule})}{(6 \text{ total atoms})} = 5.58 \times 10^{21} \text{ molecules of } CH_3OH$

b. Moles

 $5.58 \times 10^{21} \text{ molecules CH}_3 OH = \frac{1 \text{ mole CH}_3 OH}{6.022 \times 10^{23} \text{ molecules CH}_3 OH} = \frac{0.00927 \text{ moles CH}_3 OH}{0.00927 \text{ moles CH}_3 OH}$

c. Grams

$$0.00927 \text{ mol } CH_3OH \qquad 32.05 \text{ g } CH_3OH \\ \hline \text{mole } CH_3OH \qquad = \boxed{0.297 \text{ g } CH_3OH}$$

For this problem you needed to solve for the molar mass of the CH_3OH first – using techniques already discussed.

5. How many grams of $FeCl_3$ contain the same the number of total ions as 5.85g of Al_2SO_4 ?

5.85 g Al₂SO₄ $1 \mod Al_2SO_4$ $3 \mod ions$ $1 \mod FeCl_3$ $162.2 g FeCl_3$ = 4.74 g FeCl_3 150.03 g Al_2SO_4 $1 \mod Al_2SO_4$ $4 \mod ions$ $1 \mod FeCl_3$ = 4.74 g FeCl_3

6. How many atoms of oxygen are contained 14.82 g of $C_6H_{12}O_6$?

SarahChem.com

14.82 g C ₆ H ₁₂ Q ₆	1 mol C ₆ H ₁₂ Q ₆	6 mot -0	6.022 x 10 ²³ atoms O	$= 2.972 \times 10^{23}$ atoms O
	180.18 \overline{g} C ₆ H ₁₂ Q ₆	1 mot CoH12Q6_	1 mol-Q	2.572 x 10 40005 0