The Mole and Related Calculations

1. What is a mole?

A mole is a convenient way of describing a very large quantity.

> 1 mole $=6.022 \times 10^{23}$ particles
> $\left(6.022 \times 10^{23}\right.$ is known as Avogadros'number $)$

2. How does the molecular formula relate to the number of moles?

The molecular formula indicates the number of individual atoms of a particular element in a given molecule. This value is directly equal to the number of moles of a given element within a mole of a molecule.

For example, in $\mathrm{C}_{6} \mathrm{H}_{6}$, there are 6 carbon atoms in every one molecule of $\mathrm{C}_{6} \mathrm{H}_{6}$. This can also be understood as 6 moles of carbon for every mole of $\mathrm{C}_{6} \mathrm{H}_{6}$.
3. What is the molar mass of a compound?

It is the $\frac{\text { number ofgrams }}{\text { mole }}$ of a given substance.

Molar mass $=($ Number of moles of element 1 in compound) (atomic mass of element 1) + (number of moles of element 2 in compound)(atomic mass of element 2)+....

Atomic mass of each element is obtained from the periodic table.
a. Calculate the molar mass of $\mathrm{C}_{6} \mathrm{H}_{6}$.

$$
\text { (6 moles of Carbon) } \frac{(12.01 \mathrm{~g})}{(\text { mole })}+(6 \text { moles } \theta f \text { hydrogen }) \frac{(1.01 \mathrm{~g})}{(\text { mol })}=78.12 \mathrm{~g} / \mathrm{mole}
$$

4. In 3.35×10^{22} total atoms of $\mathrm{CH}_{3} \mathrm{OH}$ there are how many

a. Molecules

$$
\left(3.35 \times 10^{22} \text { totat atoms) } \frac{(1 \text { molecule })}{(6 \text { totatatoms })}=5.58 \times 10^{21} \text { molecules of } \mathrm{CH}_{3} \mathrm{OH}\right.
$$

b. Moles

$$
5.58 \times 10^{21} \text { molecules } \mathrm{GH}_{3} \mathrm{OH} \frac{1 \text { mole } \mathrm{CH}_{3} \mathrm{OH}}{6.022 \times 10^{23} \text { molechles } \mathrm{CH}_{3} \mathrm{OH}}=0.00927 \text { moles } \mathrm{CH}_{3} \mathrm{OH}
$$

c. Grams

$$
0.00927 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH} \frac{32.05 \mathrm{~g} \mathrm{CH}_{3} \mathrm{OH}}{\text { mole } \mathrm{CH}_{3} \mathrm{OH}}=0.297 \mathrm{~g} \mathrm{CH}_{3} \mathrm{OH}
$$

For this problem you needed to solve for the molar mass of the $\mathrm{CH}_{3} \mathrm{OH}$ first - using techniques already discussed.
5. How many grams of FeCl_{3} contain the same the number of total ions as 5.85 g of $\mathrm{Al}_{2} \mathrm{SO}_{4}$?

$$
5.85 \mathrm{~g} \mathrm{Al}_{2} \mathrm{SO}_{4} \quad \frac{1 \mathrm{morAt}_{2} \mathrm{SQ}_{4}}{150.03 \mathrm{~g} \mathrm{At}_{2} \mathrm{SO}_{4}} \frac{3 \mathrm{molions}}{1 \mathrm{mot}_{2} \mathrm{Al}_{2} \mathrm{SO}_{4}} \frac{1 \mathrm{~mol} \mathrm{FeCl}_{3}}{4 \mathrm{~m}_{3}+\text { ions }} \frac{162.2 \mathrm{~g} \mathrm{FeCl}_{3}}{1 \mathrm{~mol} \mathrm{FeCl}_{3}}=4.74 \mathrm{~g} \mathrm{FeCl}_{3}
$$

6. How many atoms of oxygen are contained 14.82 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$?
$14.82 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{72} \mathrm{Q}_{6} \frac{1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{180.18 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{72} \mathrm{Q}_{6}} \frac{6 \mathrm{mot}-\mathrm{Q}}{1 \mathrm{mot} \mathrm{C}_{6} \mathrm{H}_{72} \mathrm{O}_{6}} \frac{6.022 \times 10^{23} \text { atoms } \mathrm{O}}{1 \mathrm{~mol} \mathrm{Q}}=2.972 \times 10^{23}$ atoms O
